Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 22: 50-57, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928975

RESUMEN

Introduction: Single microbial pathogens or host-microbiome dysbiosis are the causes of lung diseases with suspected infectious etiology. Metagenome sequencing provides an overview of the microbiome content. Due to the rarity of most granulomatous lung diseases collecting large systematic datasets is challenging. Thus, single-patient data often can only be summarized visually. Objective: To increase the information gain from a single-case metagenome analysis we suggest a quantitative and qualitative approach. Results: The 16S metagenomic results of 7 patients with pulmonary sarcoidosis were compared with those of 22 healthy individuals. From lysed blood, total microbial DNA was extracted and sequenced. Cleaned data reads were identified taxonomically using Kraken 2 software. Individual metagenomic data were visualized with a Sankey diagram, Krona chart, and a heat-map. We identified five genera that were exclusively present or significantly enhanced in patients with sarcoidosis - Veillonella, Prevotella, Cutibacterium, Corynebacterium, and Streptococcus. Conclusions: Our approach can characterize the blood microbiome composition and diversity in rare diseases at an individual level. Investigation of the blood microbiome in patients with granulomatous lung diseases of unknown etiology, such as sarcoidosis could enhance our comprehension of their origin and pathogenesis and potentially uncover novel personalized therapeutics.

2.
Microbiol Resour Announc ; 11(2): e0111121, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35142538

RESUMEN

Sequences of multidrug-resistant (MDR) Mycobacterium tuberculosis strains are of particular interest to study the molecular mechanisms of drug resistance evolution. Here, we report the draft genome sequences of 77 endemic multidrug-resistant Mycobacterium tuberculosis strains of SIT41 (TUR) spoligotype from Bulgaria. SIT41 spoligotype is dominant (>40%) among the MDR-TB strains in Bulgaria.

3.
Front Cell Infect Microbiol ; 12: 1091341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741978

RESUMEN

Introduction: The blood microbiome is still an enigma. The existence of blood microbiota in clinically healthy individuals was proven during the last 50 years. Indirect evidence from radiometric analysis suggested the existence of living microbial forms in erythrocytes. Recently targeted nucleic acid sequencing demonstrated rich microbial biodiversity in the blood of clinically healthy individuals. The morphology and proliferation cycle of blood microbiota in peripheral blood mononuclear cells (PBMC) isolated from freshly drawn and cultured whole blood are obscure. Methods: To study the life cycle of blood microbiota we focused on light, and electron microscopy analysis. Peripheral blood mononuclear cells isolated from freshly drawn blood and stress-cultured lysed whole blood at 43°C in presence of vitamin K from healthy individuals were studied. Results: Here, we demonstrated that free circulating microbiota in the PMBC fraction possess a well-defined cell wall and proliferate by budding or through a mechanism similar to the extrusion of progeny bodies. By contrast, stress-cultured lysed whole blood microbiota proliferated as cell-wall deficient microbiota by forming electron-dense or electron-transparent bodies. The electron-dense bodies proliferated by fission or produce in chains Gram-negatively stained progeny cells or enlarged and burst to release progeny cells of 180 - 200 nm size. On the other hand, electron-transparent bodies enlarged and emitted progeny cells through the membrane. A novel proliferation mechanism of blood microbiota called by us "a cell within a cell" was observed. It combines proliferation of progeny cells within a progeny cell which is growing within the "mother" cell. Discussion: The rich biodiversity of eukaryotic and prokaryotic microbiota identified in blood by next-generation sequencing technologies and our microscopy results suggest different proliferation mechanisms in whole and cultured blood. Our documented evidence and conclusions provide a more comprehensive view of the existence of normal blood microbiota in healthy individuals.


Asunto(s)
Leucocitos Mononucleares , Microbiota , Humanos , Microscopía Electrónica , Eritrocitos
4.
Microorganisms ; 9(7)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34361900

RESUMEN

Next-generation sequencing (NGS) and metagenomics revolutionized our capacity for analysis and identification of the microbial communities in complex samples. The existence of a blood microbiome in healthy individuals has been confirmed by sequencing, but some researchers suspect that this is a cell-free circulating DNA in blood, while others have had isolated a limited number of bacterial and fungal species by culture. It is not clear what part of the blood microbiota could be resuscitated and cultured. Here, we quantitatively measured the culturable part of blood microbiota of healthy individuals by testing a medium supplemented with a high concentration of vitamin K (1 mg/mL) and culturing at 43 °C for 24 h. We applied targeted sequencing of 16S rDNA and internal transcribed spacer (ITS) markers on cultured and non-cultured blood samples from 28 healthy individuals. Dominant bacterial phyla among non-cultured samples were Proteobacteria 92.97%, Firmicutes 2.18%, Actinobacteria 1.74% and Planctomycetes 1.55%, while among cultured samples Proteobacteria were 47.83%, Firmicutes 25.85%, Actinobacteria 16.42%, Bacteroidetes 3.48%, Cyanobacteria 2.74%, and Fusobacteria 1.53%. Fungi phyla Basidiomycota, Ascomycota, and unidentified fungi were 65.08%, 17.72%, and 17.2% respectively among non-cultured samples, while among cultured samples they were 58.08%, 21.72%, and 20.2% respectively. In cultured and non-cultured samples we identified 241 OTUs belonging to 40 bacterial orders comprising 66 families and 105 genera. Fungal biodiversity accounted for 272 OTUs distributed in 61 orders, 105 families, and 133 genera. Bacterial orders that remained non-cultured, compared to blood microbiota isolated from fresh blood collection, were Sphingomonadales, Rhizobiales, and Rhodospirillales. Species of orders Bacillales, Lactobacillales, and Corynebacteriales showed the best cultivability. Fungi orders Tremellales, Polyporales, and Filobasidiales were mostly unculturable. Species of fungi orders Pleosporales, Saccharomycetales, and Helotiales were among the culturable ones. In this study, we quantified the capacity of a specific medium applied for culturing of blood microbiota in healthy individuals. Other culturing conditions and media should be tested for optimization and better characterization of blood microbiota in healthy and diseased individuals.

5.
Vaccines (Basel) ; 9(3)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803448

RESUMEN

Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only live attenuated vaccine available against tuberculosis. The first BCG vaccination was done exactly 100 years ago, in 1921. The BCG vaccine strains used worldwide represent a family of daughter sub-strains with distinct genotypic characteristics. BCG SL222 Sofia is a seed lot sub-strain descending from the Russian BCG-I (seed lot 374a) strain and has been used for vaccine production in Bulgaria since 1972. Here, we report the assembled circular genome sequence of Mycobacterium bovis BCG SL222 Sofia and phylogeny analysis with the most closely related BCG sub-strains. The full circular genome of BCG SL222 Sofia had a length of 4,370,706 bp with an average GC content of 65.60%. After 49 years of in vitro evolution in a freeze-dried condition, we identified four SNP mutations as compared to the reference BCG-I (Russia-368) sequence. BCG vaccination is of central importance for the TB elimination programs in many countries. Since 1991, almost 40 million vaccine doses of the BCG SL222 Sofia have been distributed annually through the United Nations Children's Fund (UNICEF) and the Pan American Health Organization (PAHO) to approximately 120 countries. The availability of the complete reference genome sequence for M. bovis BCG SL222 Sofia, a WHO reference reagent for the Russian BCG-I sub-strain, will facilitate the identity assurance of the genomic stability, will contribute to more consistent manufacturing, and has an important value in standardization and differentiation of sub-strains used in vaccine production. We propose to rename the sub-strain BCG SL222 Sofia to BCG-Sofia for practical and common use.

6.
Microbiol Resour Announc ; 10(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33478999

RESUMEN

Mycobacterium bovis BCG SL222 Sofia is a substrain descending from the Russian BCG-I vaccine strain. Here, we report the complete genome sequence of BCG SL222 Sofia, which will facilitate identity assurance and will contribute to more consistent manufacturing, standardization, and differentiation of substrains used in vaccine production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...